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The diffraction of second-order bichromatic Stokes waves by a semi-immersed horizontal
rectangular cylinder (prism) is investigated theoretically. The problem is assumed two-dimen-
sional and the fluid domain is divided into three regions: upwave, beneath and downwave of the
structure. Analytical expressions for the velocity potentials in each region at both first- and
second-order are obtained by an eigenfunction expansion approach. The solutions in each fluid
region are linked through matching conditions on the imaginary fluid interfaces between them.
Semi-analytical expressions are derived for the sum-and difference-frequency hydrodynamic
loads and the free-surface elevations upwave and downwave of the structure to second-order.
Numerical results are presented which illustrate the influence of the different wave and
structural parameters on these quantities at both first- and second-order.
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1. INTRODUCTION

THE TWO-DIMENSIONAL PROBLEM of second-order wave interaction with a long submerged or
semi-immersed cylinder of circular or rectangular section, has been the subject of several
previous investigations in recent years. These studies have employed a variety of analytical
and numerical techniques. Wu & Eatock Taylor (1990) calculated the second-order diffrac-
tion force on a submerged circular cylinder in water of finite depth, using a method
analogous to the three-dimensional “assisting radiation potential” approach of Lighthill
(1979) and Molin (1979). Miao & Liu (1986) and Vada (1987) used similar approaches for
the infinite depth case. Wu (1991) calculated the second-order reflection and transmission
coefficients due to wave diffraction by a submerged circular cylinder. Later, Wu (1993a) also
studied the problem of second-order wave radiation by the same body. Isaacson & Cheung
(1990, 1991), and Isaacson & Ng (1993), have developed second-order time-domain solu-
tions for the two-dimensional scattering and radiation problems respectively.

There have also been several approximate second-order analyses carried out. Newman
(1990) developed a simplified solution for the second-order vertical force on a horizontal
rectangular cylinder, based upon a deep submergence approximation. Wu (1993b) con-
sidered the hydrodynamic forces on a deeply submerged circular cylinder undergoing
large-amplitude motion using a linearized free-surface condition but the exact body bound-
ary condition. Sulisz & Johansson (1992) presented an approximate solution for the
second-order wave loading on a semi-immersed rectangular cylinder. Sulisz (1993) sub-
sequently presented an exact second-order solution to this problem for monochromatic
incident waves.
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The present paper considers the diffraction of second-order bichromatic waves by
a semi-immersed horizontal rectangular cylinder (prism), and may be considered as an
extension of the monochromatic wave case considered by Sulisz (1993). However, in the
present case, in addition to providing the hydrodynamic loads to second-order, the
free-surface elevations upwave and downwave of the structure are also computed. The fluid
domain is divided into three regions: upwave, beneath, and downwave of the structure.
Analytical expressions for the velocity potentials in each region at both first and second
order are obtained by an eigenfunction expansion approach. The solutions in each fluid
region are linked through matching conditions on the imaginary fluid interfaces between
them. Semi-analytical expressions are derived for the hydrodynamic loads and the free-
surface elevations upwave and downwave of the structure to second-order for both the sum
and difference frequencies. Numerical results are presented which illustrate the influence of
the different wave and structural parameters on these quantities at both first and second-
order.

2. THEORETICAL DEVELOPMENT

The geometry of the problem is shown in Figure 1. A long cylindrical body of rectangular
section of width 2b and draft d is located in water of uniform depth h. The problem is
idealized as two-dimensional, Cartesian coordinates (x, z) are employed with the z-axis
directed vertically upwards from an origin at the still-water level at the centre of the body.
This body is subjected to a train of nonlinear bichromatic Stokes waves propagating in the
positive x-direction. Under the assumption of an ideal, homogeneous, incompressible fluid
undergoing irrotational motion, the fluid motion may be described in terms of a velocity
potential @(x, z, t) such that the fluid velocity vector ¢ = V@. The velocity potential and
free-surface elevation Z(x, t) are assumed expressible in Stokes series, namely

D(x,z,t) = edV(x, 2, 1) + &2 PP (x, 2, 1) + ---, 1)
Ex,t) =eEV(x, t) + 22D (x, 1) + ---, )

where ¢ is a small parameter related to the wave steepness (Sarpkaya & Isaacson 1981).
By utilizing the series expansions in equations (1) and (2) and expanding the free-surface

boundary conditions as Taylor series about the still-water level, the full, nonlinear

wave-structure interaction problem may be replaced by a sequence of linear problems, one

Figure 1. Definition sketch.
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at each order of ¢ In the present context, it is the €[¢] and ([¢*] problems that are of
interest.

If the incident wave system is taken to consist of a pair of waves of height H; and
frequency w;, j = 1, 2, then the time dependency of the dynamic quantities can be separated
explicitly as follows:

2

PV(x,z, 1) = Re Y. ¢i(x,z)e ", (3)
ji=1
2 .
EO(x, 1) = Be Y 1P (x)e A, (4)
j=1

2 2
PA(x,z,t) =Re Y, Y [djlx,2)e” MW 4+ i(x, )e @™ + B, ()

j=1k=1

_ 2 2 . B i B B(Z)
EOx ) =Re Y Y [nj(x)e”@Fe0t 4oy (x)e @i e0r] +7, (6)

j=1k=1

where Z¢ denotes the real part of a complex quantity, and B® is a constant (Stoker 1957).
The first-order, O[¢], problem may then be written as

V¢V =0 in the fluid domain, (7)
0 (1)

fz =0 onz=—h, (8)
(1)

— w}¢lt =0 onz=0for|x|>b, 9)
a¢(1)

e =0 on the body surface. (10)

The surface elevation may be obtained from the potential via the linearized dynamic
free-surface boundary condition,

N = ¢“’ onz=0 for|x|>b. (11)

Finally, radiation conditions are required to ensure the correct asymptotic behaviour of the
diffracted or scattered waves,

; 831) (1)

lim o= —iy;0 " =0, (12
o5 )
lim { a0 — Ui ¢ = (13)

where y{}) is the complex spatial component of the incident potential,

T igH; oot cosh [yjo(z + h)]

2601 cosh ('))Joh) ’

in which y;, satisfies the linear dispersion relation for wave j, w7 = gy;o tanh(y;oh).
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The fluid domain is divided into three regions: region 1 for x < —b, —h < z <0; region
2for —b<x<b, —h<z< —d;and, region 3 for x > b, —h < z < 0. The potentials in
each region are denoted by dbﬁ) for n =1, 2, 3. The solutions in the three regions are related
through continuity of pressure and velocity at the imaginary fluid interfaces between them,
that is

(1) (1)
(1) _ (1) ¢ — ad)ﬂ

n =% g onx=—b —h<z< —d, (15)
PYTCUNEPRTIY

¢33 = ¢, j =—2 onx=h —hsz<-d (16)
X X

A suitable form for the velocity potential in region 1 which satisfies equations (7)-(9) and
(13) is

w1 kot COS[Kjo(z + )] s SO [Kjm(z + H)]
1= ——<Hje " —_— A jehin — = 17
P 2“’1{ i cos (kjoh) mz_: m cos (k;uh) |’ (17)
in which k;o = — iy;o and the k;,, m > 0, are the positive real roots of wf = — gkj, tan(k;,h).

The velocity potential in region 2, which satisfies equations (7), (8) and (10), may be written
as

1) ig X i cosh(,x) sinh(,,x)
D _ 2 0=+ D, L Am | p, 2 AEme) h
i2 w{wﬂb+f&+gjkmwmwwﬁ'ngww)mﬂmﬂ+)]’

(18)

where u,, = mn/(h — d), for m > 1. The corresponding solution for region 3, satisfying
equations (7), (8), (9) and (12), is

o = g i B,pe~kmts 0 cos[k;m(z + h)]. (19)
0; = cos (kjuh)
The potential coefficients 4;,, B;, Cjn, and D;,,form =0,1, 2, ...,j =1, 2, are determined
by applying the matching conditions and structural boundary conditions at the interfaces
between each region and utilizing the orthogonality of the vertical eigenfunctions over their
region of validity. By manipulating these expressions, a system of equations may be
obtained for each of the potential coefficients in turn. Truncating the infinite series that
appear in these equations after a finite number of terms allows the equations for the
potential coefficients to be solved by standard matrix techniques. Once the velocity
potentials have been determined, the free-surface elevations upwave and downwave of the
structure may be calculated from equation (11).
The second-order, ([¢*], problem may then be written as

V2¢; =0  in the fluid domain, (20)
a +

%lzo onz=—h, 1)
VA
opE

i =0 on the body surface. (22)

on
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The free-surface condition at second-order is more involved than that at first-order.
Therefore, it is convenient to first define the second-order potential components in each of
the three fluid regions as q’)ﬂi for m =1, 2, 3. Then the free-surface boundary conditions at
second-order in regions 1 (upwave) and 3 (downwave) of the structure may be written as

i s
ajz —j (w; £ w)? =057F x  onz=0 forx< —b, (23)
8¢,§i 3+ 2 3+
9= = & (@£ @)’ = Q" onz=0 forx>b, (24)
in which
Qi _ 20jop + 005 gD i 09 lw’ qb‘“az L (25a)
g 2g° Ok ax 0x ox*’
) ot — 202 (“6 1) 02,
0L :w G0 ax ?x lwf it a‘i . (25b)
2wi0; + o) . (1) 545(1) 0 (f’(l)
05 ZWW’%) ;cl3)+1wk 6x “ox ¢(1) a2’ (26a)
4 (1) (1) 2G50
_ oo 2w w; ; 3 0,5 g
Q;k :% ¢(1) & o 0x 0x ¢(1) ’ (260)

In equations (25b) and (26b) the overbars denote complex conjugates. The second-order
surface elevation components may be obtained from the corresponding potentials via the
dynamic free-surface boundary condition to yield

10 (1)6 (1) 2.2 2w 3
"I;( (a) + ) bt — y 25 (g W wk:3 ;W d)(j“(rb;cl) on z =0 for |x| > b,
g d X X g
(27a)
1 L (1) (1) 2
,,,J;:Mq’,ﬁ(_%oj a(g _ij"4 20,04 ¢V onz=0for|x|>b.
g g 0x X 9°

(27b)

Finally, radiation conditions are required to ensure the correct asymptotic behaviour of
the second-order diffracted or scattered waves. At large distances from the structure, the
scattered wave field will consist of free and forced waves. The free waves satisfy a homogene-
ous free-surface condition and a radiation condition similar to that at first order but with
corresponding changes of wave number, namely

N
xlirinoo {86@;‘ + iVjJZro @ji} =0, (28)
in which @ j; represents the second-order sum- and difference-frequency free wave potential,
whose propagating free wave numbers y jJ;rO satisfy the dispersion relation
(w; + @) =gy ;;ro tanh(y ;;roh). The correct asymptotic behaviour of the second-order forced
wave field is determined from the asymptotic form of the second-order free-surface bound-
ary condition.
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Explicit forms for the second-order velocity potentials in regions 1-3 that satisfy the
appropriate boundary conditions on the free-surface, sea-bed, and at infinity, are presented
below:

cos[(kjo + kio)(z + )]

1+ — (ko +kjo)(x +b
¢jk = T(—kyo, — kjo, 0, 0;) H;Hye (keo ko) -+ 5)

cos(k;oh) cos(kyoh)
+ mio T (— kios Kjums ks 0)) A jypHyebm ™ Bi0)350) coz([)(sk(;:; m;)i’g;iik:h;l) ]
+ ni T (K — K jo» @p> @) HjAye®inkio) 5 +0) Coic[)(ské:w;)i'z)s((i k:Lh)}l)]
+ mio ni T (Kins Kjms 1y @) A jypAjyeFon e 0 Coz([)(sk(;:;m";)iko")s((; kJ,,rh)h)]
i RS, coints ) cos [0jim(z + h)], (29)

oS (ojmh)

_(i‘ko'*'kjn)(x"'b) COS [(ij + Eko) (Z + h):l

L™ — T(= Koy — kioy — g, ) HiHye al
O (=0 70 o @) HiH cos(k;oh) cos(kyoh)

o - _ z kin—k h
+ z T(— kyo» kjm, — oy, wj)Aijke(kjm*kko)(erh) cos[( jm kO)(i + h)]
m=0 cos(k;y,h) cos(kyoh)

4 Z T(Ekm _ij) — oy, wj)Hjane(Kk,,+k,-0)(x+b) COS[(kjo - kkn)(z_+ h)]
n=0 cos(kjoh) cos(ky,h)

S e . k; k h
+ Z Z T kkn; im> — wy, wj)Aijkne(kkm+kfn)(x+b) COS [( jm + kn) (Z_+ )]
m=0n= cos(k;,h) cos(ky,h)

i Rim e%jn(* D) cos [jxm(z + h)] ; (30)

oS (o jmh)

“ h(p,x) sinh ()
25 _cx 4 p= x COS D |
¢jk C]kO + JjkO + mZH C}km smh(umb) + Jjkm COSh(,umb) Cos [,le(Z + h)], (3 )

_v v _ cos[(kjm + ki) (z + )]
T (kin, k; )B. B (ki + e j) (x + D) j
mz::o n;o K Kjms 1 7) BinBrae cos(k;y,h) cos(ky,h)

© + cos[ofn(z + h
+ Y Sjme tnxTh cos[2in(z + )]

32
m=0 COS(DC;;;mh) ’ ( )

- v = = i et COS[(Kjm + ki) (z 4+ h)]
= T ko — VB. B, o~ Fn+ki)(x—b) i 2
L2 Tk ko = 0 ) BinBiae cos(k;h) cos (Kenh)

cos[0jkm(z + h)]

cos(jmh) (33)

0 —
Z jk e_“jkm(x—b)
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in which the wave numbers o, = {— 1750, Vjx1> 2o - J» the 75, for m=1,2, .
are defined as the positive real roots of (w; + @) + g7jumtan (Y ju,h) = 0. The last term in
each of equations (29), (30), (32) and (33) represents the free-wave component of that
potential. Also, in equations (29)-(33),

—iQwiw; + 0;of + 297k jmkinoy + 92 ki) Kinking?

T(kkm kjma Wy, wj) = (34)

2w [(w; + wk)zwfw,f + g% (ke — xkjn)*]

When applying equation (34), it m* + n* + (k — j)> =0, then T( ) =0 in the first and fourth
terms of equation (30), and the first term of equation (32). The potential coefficients R ji,:m and
S ;;rm are now found by applying the second-order matching conditions at the imaginary
fluid interfaces between the three regions, and utilizing the orthogonality properties of the
vertical eigenfunctions. The procedure is similar to that used to determine the first-order

coefficients. The matching conditions at second-order are

o8t oo

0x 0x

1+ 24
¢jk = d)jk >

onx=—b—h<z< —d, (35)

a5 og
0x 0x

d)jki:d)fki, onx=b —-h<z< —d. (36)

Once the second-order velocity potentials have been determined, the free-surface elev-
ations at this order may be calculated from equation (27).

Other quantities of interest may now be determined; the hydrodynamic pressure to
second-order is given by

o
ot

1 op?
P=—pgz—¢p —&%p {E(Vd)“))z L B‘Z)}. (37

If the hydrodynamic force and moment components are now expressed as pertur-
bation series, in a similar manner to the velocity potential and free-surface elevation,
namely

F(t) = eFV@) + 2FP() + -, (38)
M(t) = eMP(t) + EMP(t) + -, (39)

then the first- and second-order force and moment vectors may be written as

2

FO(t) = Re Y fDeior, (40)
j=1
2 2 . .
FO(t) = Re ), ) [fje @ 4 fe i@, (41)
j=1k=1
2 .
MD(t) =ZRe Y, mPe o, (42)
j=1
2 2 . .
MP(t) =2 Yy, Y [mje @F et 4+ mye @m0, 43)

j=1k=1
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in which
£ = ipw;¢'"'nds, (44)
JSgo
r . 1
i = [ [ior+ ono — vy |nas— Lo [ oondonac, w9
JSpo B
_ 0 S ] _
£ = S [lp(wj — 0 dy — 4PV¢§'1)V¢1&1)] ndsS + qu ;05§ n dC, (46)
mlV = J ipo; ¢ r xnds, 47)

. 1 1
m; = L [m(wj + o)by — 4pv¢;“v¢;j)}xn ds — 49" JC w00 i rxn dC, (48)

_ . -1 - 1 _
mj = J [m(wj — )Py — ZpV(b;l)Vq’)Ll)}an ds + 4—gpj ijkqﬁy)qb}(l)rxn dC. 49)
SBO CB

In the above equations, Spo indicates the equilibrium surface of the body up to the
still-water level, and Cp indicates the waterline contour (waterline points).

Finally, the Bernoulli constant at second-order may be determined from the asymptotic
behaviour of the wave field, and is given by

| kjo |
B® = [IH;|% + | Ajol? + | Bjo|*] D

—. 50
j=1 (,UJZ COS(ijh) ( )

0| =
DM

3. NUMERICAL RESULTS AND DISCUSSION

Before considering the bichromatic wave case, a comparison was made with the monochro-
matic wave results of Sulisz (1993). Figure 2 presents a comparison of the second-order
components of horizontal and vertical force, and the overturning moment about the point
x = b, z = — d obtained by the present computer program and the results of Sulisz. In the
figures, the dimensionless wave number is y;0h, forces are non-dimensionalized by pg(H ;/2)*
and moments by pgh(H;/2)*. The infinite series in the expressions for the first-order
potentials in equations (17)-(19) were truncated after 30 terms, while the infinite series in the
second-order potentials in equations (29), (31) and (32) were truncated after 60 terms. It can
be seen that excellent agreement is exhibited over the entire frequency range of interest for
each case considered. Therefore, the same truncations of the infinite potential series at first-
and second-order were adopted in the bichromatic wave analysis.

The second-order hydrodynamic forces and moment, and surface elevations, for the case
of bichromatic incident waves will now be presented. The numerical results are presented as
dimensionless sum- or difference-frequency loads at a fixed sum or difference frequency, for
varying difference or sum frequency, respectively. The forces are nondimensionalized by
pg(H? + H3)/4 and the moment by pgd(H? + H3)/4. Figure 3 presents the variation of the
dimensionless second-order, sum-frequency forces and moments for (w; + w,) = 40 rad/s,
and b/h =1, d/h = 0-4 with difference frequency (w; — ), also in rad/s. It can be seen that,
in general, the sum-frequency terms, (w; + wy), j # k, are largest at the largest difference
frequencies, while the double-frequency terms, w;, are a maximum at zero difference
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Figure 2. Comparison of second-order horizontal (—, @) and vertical forces (-----, @), and overturning
moment (- - -, l) computed by present approach (lines) and results of Sulisz (1993) (symbols)..

frequency. In Figure 4, it can be seen that the horizontal difference-frequency force
components exhibit the same behaviour as their sum-frequency counterparts, while all
components of the second-order vertical difference-frequency force are strongly concen-
trated about the zero difference frequency. This implies that the mean second-order vertical
force is the dominant contribution to the low-frequency vertical loading. The moment in
Figure 4 is clearly a combination of the horizontal and vertical force components.

Figures 5 and 6 present, respectively, the variation of the dimensionless second-order,
sum- and difference-frequency forces and moments for (w; — w,) = 1-0 rad/s, and b/h =1,
d/h = 0-4 with sum-frequency (w; + ®,), also in rad/s. From Figure 5, it can be seen that,
for all loading components, the sum-frequency loads, at frequencies (w; + wy), j # k, are
dominant, and are largest at the sum frequencies. In Figure 6, it can be seen that the
difference-frequency loading, at frequencies (w; — wy), j # k, again dominates the mean
(zero difference-frequency) loading.

One advantage of pursuing a complete solution for the second-order potential, rather
than just a solution for the second-order loads through an assisting radiation potential
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Figure 7. Second-order (a) sum-frequency and (b) difference-frequency surface elevation components at time
t =0 for kih =1, k,h =4, b/h =1, and d/h =0-2. Notation: , (o) + wy); ——— , (0, + w,) components;
———————— , (wy + ®,) components; — — —, (w, + ®;) components.

approach (or something similar), is that quantities such as surface elevation may be
determined. Figures 7-10 present the free-surface elevation components at time t = 0,
upwave and downwave of the structure for two different wave conditions. In these figures
the spatial ordinate is nondimensionalized by the cylinder draft d and is measured from the
origin of the global coordinate system as shown in Figure 1. Negative values of this ordinate
denote locations upwave of the structure, while positive values indicate downwave loca-
tions. All surface elevations in these figures are nondimensionalized by (H; + H,)/4.
Figure 7 presents the dimensionless second-order sum- and difference-frequency surface
elevation components for k;h = 1, k,h =4, b/h = 1 and d/h = 0-2. It can be seen that there
is a dramatic reduction in the amplitudes of the second-order wave components downwave
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Figure 8. First-order, second-order and total surface elevation components at time t =0 for kh =1, k,h = 4,
b/h=1,H;/h = H,/h =01, and d/h = 0-2. Notation:- — — - - — — , -first-order components; — — — , second-order
components; ———, total (first-plus second-order).

of the structure, and that this decrease occurs for both the sum- and difference-frequency
components.

Figure 8 presents the corresponding first-order, second-order and total surface elevations
upwave and downwave of the structure at time ¢t = 0. The reflected wave field is clearly
apparent in the figure; furthermore, it can be seen that even though the second-order wave
components may contribute significantly to the total loading on the structure, the transmit-
ted wave field is essentially linear. These results are for an incident wave system in which all
components are in phase at x = 0. Clearly, the relative phasing of the various wave
components may have a significant influence on the numerical results.
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Table 1 presents the amplitudes of the first-order, second-order and total free-surface
elevations at the upwave and downwave edges of the cylinder (i.e., the wave run-up
components) for the same data used to generate Figures 7 and 8. It can be seen that
the maxima of the first- and second-order run-up do not occur simultaneously; conse-
quently the maximum total run-up is less than the sum of the first- and second-order
components.

Figures 9 and 10 present similar data to Figures 7 and 8, respectively, but for the case
kih = 1-5, k,h = 3-5. The conclusions regarding the earlier case are also true here, i.e., the
structure presents an effective filter to the transmission of the second-order wave field.

Table 2 presents the amplitudes of the first-order, second-order and total wave run-up
components at the upwave and downwave edges of the cylinder for the same data used to
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Figure 9. Second-order (a) sum-frequency and (b) difference-frequency surface elevation components at time
t =0 for kih =1-5, kyh =35, b/h =1, and d/h = 0-2. Notation: , (0; + ®;) components; —-—-— , (0, £ w5)
components; - — - ———— — , (wy + ®,) components; — — —, (w, + ®;) components.
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TaBLE 1

Amplitudes of first-order, second-order and total surface elevations at upwave and
downwave edges of cylinder for kih =1, k,h =4, b/h=1, Hy/h = H,/h =01, and

d/h =02
Upwave (x = —b) Downwave (x = b)
First-order surface elevation 1-925 0-310
Second-order surface elevation 0-515 0-049
Total surface elevation 2:307 0-324

-
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Dimensionless second-order surface elevation
L

-1 L I . 1 . ] L
0 1 2 3 4

Dimensionless horizontal distance

Figure 10. First-order, second-order and total surface elevation components at time t =0 for kih =15,
k,h =35, b/h=1, Hi/h=H,/h =01, and d/h =02: - - -, first-order components; — — —, second-order
components; ———, total (first-plus second-order).



396 W. LI AND A. N. WILLIAMS

TABLE 2

Amplitudes of first-order, second-order and total surface elevations at upwave and
downwave edges of cylinder for kyh =15, k,h =35, b/h =1, H/h = H,/h =0-1, and

d/h =02
Upwave (x = —b) Downwave (x = b)
First-order surface elevation 1-970 0225
Second-order surface elevation 0424 0-049
Total surface elevation 2:283 0236

generate Figures 9 and 10. Again, it can be seen that first- and second-order run-up
components are not in phase and the upwave values are significantly larger than the
downwave ones.

4. CONCLUSIONS

A complete second-order solution has been presented for the diffraction of bichromatic
Stokes waves by a semi-immersed rectangular cylinder. Analytical expressions have been
developed for the fluid velocity potentials at both first- and second-order in the three fluid
domains; upwave, downwave, and beneath the structure. Numerical results have been
presented for the sum- and difference-frequency hydrodynamic loads, and the free-surface
elevations upwave and downwave of the structure. For the range of wave amplitudes and
frequencies considered herein it is found that although the second-order hydrodynamic
loads on the structure may be significant, the transmitted wave field is essentially linear.
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