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The di!raction of second-order bichromatic Stokes waves by a semi-immersed horizontal
rectangular cylinder (prism) is investigated theoretically. The problem is assumed two-dimen-
sional and the #uid domain is divided into three regions: upwave, beneath and downwave of the
structure. Analytical expressions for the velocity potentials in each region at both "rst- and
second-order are obtained by an eigenfunction expansion approach. The solutions in each #uid
region are linked through matching conditions on the imaginary #uid interfaces between them.
Semi-analytical expressions are derived for the sum-and di!erence-frequency hydrodynamic
loads and the free-surface elevations upwave and downwave of the structure to second-order.
Numerical results are presented which illustrate the in#uence of the di!erent wave and
structural parameters on these quantities at both "rst- and second-order.
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1. INTRODUCTION

THE TWO-DIMENSIONAL PROBLEM of second-order wave interaction with a long submerged or
semi-immersed cylinder of circular or rectangular section, has been the subject of several
previous investigations in recent years. These studies have employed a variety of analytical
and numerical techniques. Wu & Eatock Taylor (1990) calculated the second-order di!rac-
tion force on a submerged circular cylinder in water of "nite depth, using a method
analogous to the three-dimensional &&assisting radiation potential'' approach of Lighthill
(1979) and Molin (1979). Miao & Liu (1986) and Vada (1987) used similar approaches for
the in"nite depth case. Wu (1991) calculated the second-order re#ection and transmission
coe$cients due to wave di!raction by a submerged circular cylinder. Later, Wu (1993a) also
studied the problem of second-order wave radiation by the same body. Isaacson & Cheung
(1990, 1991), and Isaacson & Ng (1993), have developed second-order time-domain solu-
tions for the two-dimensional scattering and radiation problems respectively.

There have also been several approximate second-order analyses carried out. Newman
(1990) developed a simpli"ed solution for the second-order vertical force on a horizontal
rectangular cylinder, based upon a deep submergence approximation. Wu (1993b) con-
sidered the hydrodynamic forces on a deeply submerged circular cylinder undergoing
large-amplitude motion using a linearized free-surface condition but the exact body bound-
ary condition. Sulisz & Johansson (1992) presented an approximate solution for the
second-order wave loading on a semi-immersed rectangular cylinder. Sulisz (1993) sub-
sequently presented an exact second-order solution to this problem for monochromatic
incident waves.
9}9746/99/040381#17 $30.00 ( 1999 Academic Press
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The present paper considers the di!raction of second-order bichromatic waves by
a semi-immersed horizontal rectangular cylinder (prism), and may be considered as an
extension of the monochromatic wave case considered by Sulisz (1993). However, in the
present case, in addition to providing the hydrodynamic loads to second-order, the
free-surface elevations upwave and downwave of the structure are also computed. The #uid
domain is divided into three regions: upwave, beneath, and downwave of the structure.
Analytical expressions for the velocity potentials in each region at both "rst and second
order are obtained by an eigenfunction expansion approach. The solutions in each #uid
region are linked through matching conditions on the imaginary #uid interfaces between
them. Semi-analytical expressions are derived for the hydrodynamic loads and the free-
surface elevations upwave and downwave of the structure to second-order for both the sum
and di!erence frequencies. Numerical results are presented which illustrate the in#uence of
the di!erent wave and structural parameters on these quantities at both "rst and second-
order.

2. THEORETICAL DEVELOPMENT

The geometry of the problem is shown in Figure 1. A long cylindrical body of rectangular
section of width 2b and draft d is located in water of uniform depth h. The problem is
idealized as two-dimensional, Cartesian coordinates (x, z) are employed with the z-axis
directed vertically upwards from an origin at the still-water level at the centre of the body.
This body is subjected to a train of nonlinear bichromatic Stokes waves propagating in the
positive x-direction. Under the assumption of an ideal, homogeneous, incompressible #uid
undergoing irrotational motion, the #uid motion may be described in terms of a velocity
potential U (x, z, t) such that the #uid velocity vector q"$U. The velocity potential and
free-surface elevation N (x, t) are assumed expressible in Stokes series, namely

U(x, z, t)"eU(1) (x, z, t)#e2U(2) (x, z, t)#2, (1)

N (x, t)"eN(1)(x, t)#e2N(2) (x, t)#2, (2)

where e is a small parameter related to the wave steepness (Sarpkaya & Isaacson 1981).
By utilizing the series expansions in equations (1) and (2) and expanding the free-surface

boundary conditions as Taylor series about the still-water level, the full, nonlinear
wave}structure interaction problem may be replaced by a sequence of linear problems, one
Figure 1. De"nition sketch.
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at each order of e. In the present context, it is the O[e] and O[e2] problems that are of
interest.

If the incident wave system is taken to consist of a pair of waves of height H
i
and

frequency u
j
, j"1, 2, then the time dependency of the dynamic quantities can be separated

explicitly as follows:

U(1)(x, z, t)"Re
2
+
j/1

/(1)
j

(x, z)e~*ujt, (3)

N(1)(x, t)"Re
2
+
j/1

g(1)
j

(x)e~*ujt, (4)

U(2) (x, z, t)"Re
2
+
j/1

2
+
k/1

[/`
jk

(x, z)e~*(uj`uk)t#/~
jk

(x, z)e~*(uj~uk)t]#B(2)t, (5)

N(2) (x, t)"Re
2
+
j/1

2
+
k/1

[g`
jk

(x)e~*(uj`uk)t#g~
jk

(x)e~*(uj~uk)t]#
B(2)

g
, (6)

where Re denotes the real part of a complex quantity, and B(2) is a constant (Stoker 1957).
The "rst-order, O[e], problem may then be written as

+2/(1)
j
"0 in the #uid domain, (7)

L/(1)
j

Lz
"0 on z"!h, (8)

!u2
j
/(1)
j
#g

L/(1)
j

Lz
"0 on z"0 for Dx D5b, (9)

L/(1)
j

Ln
"0 on the body surface. (10)

The surface elevation may be obtained from the potential via the linearized dynamic
free-surface boundary condition,

g(1)
j
"

iu
j

g
/(1)
j

on z"0 for DxD5b. (11)

Finally, radiation conditions are required to ensure the correct asymptotic behaviour of the
di!racted or scattered waves,

lim
x?=

G
L/(1)

j
Lx

!ic
j0

/(1)
j H"0, (12)

lim
x?~=

G
L (/(1)

j
!t(1)

Ij
)

Lx
#ic

j0
(/(1)

j
!t(1)

Ij H"0, (13)

where t (1)
Ij

is the complex spatial component of the incident potential,

t(1)
Ij
"!

igH
j

2u
j

e*cj0t
cosh [c

j0
(z#h)]

cosh (c
j0

h)
, (14)

in which c
j0

satis"es the linear dispersion relation for wave j, u2
j
"gc

j0
tanh(c

j0
h).



384 W. LI AND A. N. WILLIAMS
The #uid domain is divided into three regions: region 1 for x4!b, !h4z40; region
2 for !b4x4b, !h4z4!d; and, region 3 for x5b, !h4z40. The potentials in
each region are denoted by /(1)

jn
for n"1, 2, 3. The solutions in the three regions are related

through continuity of pressure and velocity at the imaginary #uid interfaces between them,
that is

/(1)
j1
"/(1)

j2
,

L/(1)
j1

Lx
"

L/(1)
j2

Lx
on x"!b, !h4z4!d, (15)

/(1)
j3
"/(1)

j2
,

L/(1)
j3

Lx
"

L/(1)
j2

Lx
on x"b, !h4z4!d. (16)

A suitable form for the velocity potential in region 1 which satis"es equations (7)}(9) and
(13) is

/(1)
j1
"!

ig

2u
j
GHj

e~kj0(x`b)
cos[k

j0
(z#h)]

cos (k
j0

h)
#

=
+

m/0

A
jm

ekjm(x`b)
cos[k

jm
(z#h)]

cos (k
jm

h) H , (17)

in which k
j0
"!ic

j0
and the k

jm
, m50, are the positive real roots of u2

j
"!gk

jm
tan(k

jm
h).

The velocity potential in region 2, which satis"es equations (7), (8) and (10), may be written
as

/(1)
j2
"!

ig

u
j
G(Cj0

x

b
#D

j0
)#

=
+

m/1
CCjm

cosh(k
m
x)

cosh(k
m
b)
#D

jm

sinh(k
m
x)

sinh(k
m
b)D cos [k

m
(z#h)]H ,

(18)

where k
m
"mn/(h!d), for m51. The corresponding solution for region 3, satisfying

equations (7), (8), (9) and (12), is

/(1)
j3
"!

ig

u
j

=
+

m/0

B
jm

e~kjm(x~b)
cos[k

jm
(z#h)]

cos (k
jm

h)
. (19)

The potential coe$cients A
jm

, B
jm

C
jm

, and D
jm

, for m"0, 1, 2,2, j"1, 2, are determined
by applying the matching conditions and structural boundary conditions at the interfaces
between each region and utilizing the orthogonality of the vertical eigenfunctions over their
region of validity. By manipulating these expressions, a system of equations may be
obtained for each of the potential coe$cients in turn. Truncating the in"nite series that
appear in these equations after a "nite number of terms allows the equations for the
potential coe$cients to be solved by standard matrix techniques. Once the velocity
potentials have been determined, the free-surface elevations upwave and downwave of the
structure may be calculated from equation (11).

The second-order, O[e2], problem may then be written as

+2/$

jk
"0 in the #uid domain, (20)

L/$

k
Lz

"0 on z"!h, (21)

L/$

jk
Ln

"0 on the body surface. (22)
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The free-surface condition at second-order is more involved than that at "rst-order.
Therefore, it is convenient to "rst de"ne the second-order potential components in each of
the three #uid regions as /m$

jk
for m"1, 2, 3. Then the free-surface boundary conditions at

second-order in regions 1 (upwave) and 3 (downwave) of the structure may be written as

g
L/1$

jk
Lz

!/1$
jk

(u
j
$u

k
)2"Q1$

jk
on z"0 for x4!b, (23)

g
L/3$

k
Lz

!/3$

jk
(u

j
$u

k
)2"Q3$

jk
on z"0 for x5b, (24)

in which

Q1`
jk

"

2u2
j
u3

k
#u

j
u4

k
2g2

i/(1)
j1

/(1)
k1
#iu

k

L/(1)
j1

Lx

L/(1)
k1

Lx
#

iu
j

2
/(1)
j1

L2/(1)
k1

Lx2
, (25a)

Q1~
jk

"

u
j
u4

k
!2u2

j
u3

k
2g2

i/(1)
j1

/N (1)
k1

!iu
k

L/(1)
j1

Lx

L/N (1)
k1

Lx
#

iu
j

2
/(1)

j1

L2/N (1)
k1

Lx2
, (25b)

Q3`
jk

"

2u2
j
u3

k
#u

j
u4

k
2g2

i/(1)
j3

/(1)
k3
#iu

k

L/(1)
j3

Lx

L/(1)
k3

Lx
#

iu
j

2
/(1)
j3

L2/(1)
k3

Lx2
, (26a)

Q3~
jk

"

u
j
u4

k
!2u2

j
u3

k
2g2

i/(1)
j3

/N (1)
k3

!iu
k

L/(1)
j3

Lx

L/N (1)
k3

Lx
#

iu
j

2
/(1)

j3

L2/N (1)
k3

Lx2
, (26b)

In equations (25b) and (26b) the overbars denote complex conjugates. The second-order
surface elevation components may be obtained from the corresponding potentials via the
dynamic free-surface boundary condition to yield

g`
jk
"

i(u
j
#u

k
)

g
/`
jk
!

1

4g

L/(1)
j

Lx

L/(1)
k

Lx
!

u2
j
u2

k
#2u

j
u3

k
4g3

/(1)
j

/(1)
k

on z"0 for Dx D5b,

(27a)

g~
jk
"

i (u
j
!u

k
)

g
/~
jk
!

1

4g

L/(1)
j

Lx

L/M (1)
k

Lx
!

u2
j
u2

k
!2u

j
u3

k
4g3

/M (1)
j

/(1)
k

on z"0 for Dx D5b.

(27b)

Finally, radiation conditions are required to ensure the correct asymptotic behaviour of
the second-order di!racted or scattered waves. At large distances from the structure, the
scattered wave "eld will consist of free and forced waves. The free waves satisfy a homogene-
ous free-surface condition and a radiation condition similar to that at "rst order but with
corresponding changes of wave number, namely

lim
x?$=

G
LH$

jk
Lx

Gic$

jk0
H$

jk H"0, (28)

in which H$

jk
represents the second-order sum- and di!erence-frequency free wave potential,

whose propagating free wave numbers c$

jk0
satisfy the dispersion relation

(u
j
$u

k
)2"gc$

jk0
tanh(c$

jk0
h). The correct asymptotic behaviour of the second-order forced

wave "eld is determined from the asymptotic form of the second-order free-surface bound-
ary condition.
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Explicit forms for the second-order velocity potentials in regions 1}3 that satisfy the
appropriate boundary conditions on the free-surface, sea-bed, and at in"nity, are presented
below:

/1#

jk
"¹(!k

k0
,!k

j0
, u

k
, u

j
)H

j
H

k
e~(kk0`kj0)(x`b)

cos[(k
j0
#k

k0
) (z#h)]

cos(k
j0

h) cos(k
k0

h)

#

=
+

m/0

¹(!k
k0

, k
jm

, u
k
, u

j
)A

jm
H

k
e(kjm~kk0)(x`b)

cos[(k
jm
!k

k0
) (z#h)]

cos(k
jm

h) cos(k
k0

h)

#

=
+
n/0

¹(k
kn

,!k
j0

, u
k
, u

j
)H

j
A

kn
e(kkn`kj0)(x`b)

cos[(k
j0
!k

kn
) (z#h)]

cos(k
j0

h) cos(k
kn
h)

#

=
+

m/0

=
+
n/0

¹(k
kn

, k
jm

, u
k
, u

j
)A

jm
A

kn
e(kkm`kjn)(x`b)

cos[(k
jm
#k

kn
) (z#h)]

cos(k
jm

h) cos(k
kn

h)

#

=
+

m/0

R`
jkm

ea`jkm(x`b)
cos[a`

jkm
(z#h)]

cos(a`
jkm

h)
, (29)

/1~
jk

"¹ (!kM
k0

,!k
j0

,!u
k
, u

j
)H

j
HM

k
e~(k

6
k0`kj0)(x`b)

cos[(k
j0
#kM

k0
) (z#h)]

cos(k
j0

h) cos(kM
k0

h)

#

=
+

m/0

¹ (!kM
k0

, k
jm

,!u
k
, u

j
)A

jm
HM

k
e(kjm~k1 k0)(x`b)

cos[(k
jm
!kM

k0
) (z#h)]

cos(k
jm

h) cos(kM
k0

h)

#

=
+
n/0

¹(kM
kn

,!k
j0

,!u
k
, u

j
)H

j
AM

kn
e(k1 kn`kj0)(x`b)

cos[(k
j0
!kM

kn
) (z#h)]

cos(k
j0

h) cos(kM
kn
h)

#

=
+

m/0

=
+
n/0

¹ (kM
kn

, k
jm

,!u
k
, u

j
)A

jm
AM

kn
e(k1 km`kjn)(x`b)

cos[(k
jm
#kM

kn
) (z#h)]

cos(k
jm

h) cos(kM
kn

h)

#

=
+

m/0

R~
jkm

ea~jkm(x`b)
cos[a~

jkm
(z#h)]

cos(a~
jkm

h)
, (30)

/2$
jk

"C$

jk0
#D$

jk0
#

=
+

m/1
CC$

jkm

cosh(k
m
x)

sinh(k
m
b)
#D$

jkm

sinh(k
m
x)

cosh(k
m
b)D cos[k

m
(z#h)], (31)

/3`
jk

"

=
+

m/0

=
+
n/0

¹(k
kn

, k
jm

, u
k
, u

j
)B

jm
B
kn

e~(kkm`kjn)(x`b)
cos[(k

jm
#k

kn
) (z#h)]

cos(k
jm

h) cos(k
kn
h)

#

=
+

m/0

S`
jkm

e~a`jkm(x~b)
cos[a`

jkm
(z#h)]

cos(a`
jkm

h)
, (32)

/3~
jk

"

=
+

m/0

=
+
n/0

¹(kM
kn

, k
jm

,!u
k
, u

j
)B

jm
BM
kn

e~(k1 km`kjn)(x~b)
cos[(k

jm
#kM

kn
) (z#h)]

cos(k
jm

h) cos(kM
kn
h)

#

=
+

m/0

S~
jkm

e~a~jkm(x~b)
cos[a~

jkm
(z#h)]

cos(a~
jkm

h)
, (33)
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in which the wave numbers a$

jkm
"M!ic$

jk0
, c$

jk1
, $

jk2
,2N, the c$

jkm
for m"1, 2,2

are de"ned as the positive real roots of (u
j
$u

k
)2#gc

jkm
tan (c

jkm
h)"0. The last term in

each of equations (29), (30), (32) and (33) represents the free-wave component of that
potential. Also, in equations (29)}(33),

¹(k
kn

, k
jm

, u
k
, u

j
)"

!i (2u2
j
u3

k
#u

j
u4

k
#2g2k

jm
k
kn

u
k
#g2k2

kn
u

j
)k

jm
k
kn

g2

2u
j
u

k
[(u

j
#u

k
)2u2

j
u2

k
#g2(u

j
k
kn
!u

k
k
jm

)2]
. (34)

When applying equation (34), if m2#n2#(k!j)2"0, then ¹ ( )"0 in the "rst and fourth
terms of equation (30), and the "rst term of equation (32). The potential coe$cients R$

jkm
and

S$

jkm
are now found by applying the second-order matching conditions at the imaginary

#uid interfaces between the three regions, and utilizing the orthogonality properties of the
vertical eigenfunctions. The procedure is similar to that used to determine the "rst-order
coe$cients. The matching conditions at second-order are

/1$
jk

"/2$
jk

,
L/1$

jk
Lx

"

L/2$
jk

Lx
on x"!b,!h4z4!d, (35)

/3$
jk

"/2$
jk

,
L/3$

jk
Lx

"

L/2$
jk

Lx
on x"b,!h4z4!d. (36)

Once the second-order velocity potentials have been determined, the free-surface elev-
ations at this order may be calculated from equation (27).

Other quantities of interest may now be determined; the hydrodynamic pressure to
second-order is given by

P"!ogz!eo
LU(1)

Lt
!e2oG

1

2
($U(1))2#

LU(2)

Lt
!B(2)H . (37)

If the hydrodynamic force and moment components are now expressed as pertur-
bation series, in a similar manner to the velocity potential and free-surface elevation,
namely

F(t)"eF(1) (t)#e2F(2) (t)#2, (38)

M (t)"eM(1) (t)#e2M(2) (t)#2, (39)

then the "rst- and second-order force and moment vectors may be written as

F(1) (t)"Re
2
+
j/1

f (1)
j

e~*ujt, (40)

F(2)(t)"Re
2
+
j/1

2
+
k/1

[f`
jk

e~*(uj`uk)t#f~
jk

e~*(uj~uk)t], (41)

M(1)(t)"Re
2
+
j/1

m (1)
j

e~*ujt, (42)

M(2)(t)"Re
2
+
j/1

2
+
k/1

[m`
jk

e~*(uj`uk)t#m~
jk

e~*(uj~uk)t], (43)
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in which

f (1)
j

"P
SBO

iou
j
/(1)

j
n dS, (44)

f`
jk
"P

SBO
Cio (u

j
#u

k
)/`

jk
!

1

4
o$/(1)

j
$/(1)

k D n dS!
1

4g
o P

CB

u
j
u

k
/(1)
j

/(1)
k

n dC, (45)

f~
jk
"P

SBO
Cio (u

j
!u

k
)/~

jk
!

1

4
o$/(1)

j
$/N (1)

k D n dS#
1

4g
o P

CB

u
j
u

k
/(1)
j

/N (1)
k

n dC, (46)

m(1)
j
"P

SBO

iou
j
/(1)
j

r]n dS, (47)

m`
jk
"P

SBO
Cio(u

j
#u

k
)/`

jk
!

1

4
o$/(1)

j
$/(1)

k D r3n dS!
1

4g
o P

CB

u
j
u

k
/(1)
j

/(1)
k

r3n dC, (48)

m~
jk
"P

SBO
Cio(u

j
!u

k
)/~

jk
!

1

4
o$/(1)

j
$/M (1)

k D r3n dS#
1

4g
o P

CB

u
j
u

k
/(1)
j

/M (1)
k

r3n dC. (49)

In the above equations, S
BO

indicates the equilibrium surface of the body up to the
still-water level, and C

B
indicates the waterline contour (waterline points).

Finally, the Bernoulli constant at second-order may be determined from the asymptotic
behaviour of the wave "eld, and is given by

B(2)"
1

8

2
+
j/1

[ DH
j
D2#DA

j0
D2#DB

j0
D2]

Dk
j0

D2
u2

j
cos(k

j0
h)

. (50)

3. NUMERICAL RESULTS AND DISCUSSION

Before considering the bichromatic wave case, a comparison was made with the monochro-
matic wave results of Sulisz (1993). Figure 2 presents a comparison of the second-order
components of horizontal and vertical force, and the overturning moment about the point
x"b, z"!d obtained by the present computer program and the results of Sulisz. In the
"gures, the dimensionless wave number is c

j0
h, forces are non-dimensionalized by og(H

j
/2)2

and moments by ogh(H
j
/2)2. The in"nite series in the expressions for the "rst-order

potentials in equations (17)}(19) were truncated after 30 terms, while the in"nite series in the
second-order potentials in equations (29), (31) and (32) were truncated after 60 terms. It can
be seen that excellent agreement is exhibited over the entire frequency range of interest for
each case considered. Therefore, the same truncations of the in"nite potential series at "rst-
and second-order were adopted in the bichromatic wave analysis.

The second-order hydrodynamic forces and moment, and surface elevations, for the case
of bichromatic incident waves will now be presented. The numerical results are presented as
dimensionless sum- or di!erence-frequency loads at a "xed sum or di!erence frequency, for
varying di!erence or sum frequency, respectively. The forces are nondimensionalized by
og(H2

1
#H2

2
)/4 and the moment by ogd(H2

1
#H2

2
)/4. Figure 3 presents the variation of the

dimensionless second-order, sum-frequency forces and moments for (u
1
#u

2
)"4)0 rad/s,

and b/h"1, d/h"0)4 with di!erence frequency (u
1
!u

2
), also in rad/s. It can be seen that,

in general, the sum-frequency terms, (u
j
#u

k
), jOk, are largest at the largest di!erence

frequencies, while the double-frequency terms, u , are a maximum at zero di!erence

i



Figure 2. Comparison of second-order horizontal (*, d) and vertical forces ( - - - - - , r), and overturning
moment (} } }, j) computed by present approach (lines) and results of Sulisz (1993) (symbols)..

DIFFRACTION OF SECOND-ORDER BICHROMATIC WAVES 389
frequency. In Figure 4, it can be seen that the horizontal di!erence-frequency force
components exhibit the same behaviour as their sum-frequency counterparts, while all
components of the second-order vertical di!erence-frequency force are strongly concen-
trated about the zero di!erence frequency. This implies that the mean second-order vertical
force is the dominant contribution to the low-frequency vertical loading. The moment in
Figure 4 is clearly a combination of the horizontal and vertical force components.

Figures 5 and 6 present, respectively, the variation of the dimensionless second-order,
sum- and di!erence-frequency forces and moments for (u

1
!u

2
)"1)0 rad/s, and b/h"1,

d/h"0)4 with sum-frequency (u
1
#u

2
), also in rad/s. From Figure 5, it can be seen that,

for all loading components, the sum-frequency loads, at frequencies (u
j
#u

k
), jOk, are

dominant, and are largest at the sum frequencies. In Figure 6, it can be seen that the
di!erence-frequency loading, at frequencies (u

j
!u

k
), jOk, again dominates the mean

(zero di!erence-frequency) loading.
One advantage of pursuing a complete solution for the second-order potential, rather

than just a solution for the second-order loads through an assisting radiation potential
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Figure 7. Second-order (a) sum-frequency and (b) di!erence-frequency surface elevation components at time
t"0 for k

1
h"1, k

2
h"4, b/h"1, and d/h"0)2. Notation: ***, (u

1
$u

1
); } )} )}, (u

2
$u

2
) components;

} } } } } } } }, (u
1
$u

2
) components; ***, (u

2
$u

1
) components.
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approach (or something similar), is that quantities such as surface elevation may be
determined. Figures 7}10 present the free-surface elevation components at time t"0,
upwave and downwave of the structure for two di!erent wave conditions. In these "gures
the spatial ordinate is nondimensionalized by the cylinder draft d and is measured from the
origin of the global coordinate system as shown in Figure 1. Negative values of this ordinate
denote locations upwave of the structure, while positive values indicate downwave loca-
tions. All surface elevations in these "gures are nondimensionalized by (H

1
#H

2
)/4.

Figure 7 presents the dimensionless second-order sum- and di!erence-frequency surface
elevation components for k

1
h"1, k

2
h"4, b/h"1 and d/h"0)2. It can be seen that there

is a dramatic reduction in the amplitudes of the second-order wave components downwave



Figure 8. First-order, second-order and total surface elevation components at time t"0 for k
1
h"1, k

2
h"4,

b/h"1, H
1
/h"H

2
/h"0)1, and d/h"0)2. Notation:} } } } } } }, -"rst-order components;*** , second-order

components; ***, total ("rst-plus second-order).
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of the structure, and that this decrease occurs for both the sum- and di!erence-frequency
components.

Figure 8 presents the corresponding "rst-order, second-order and total surface elevations
upwave and downwave of the structure at time t"0. The re#ected wave "eld is clearly
apparent in the "gure; furthermore, it can be seen that even though the second-order wave
components may contribute signi"cantly to the total loading on the structure, the transmit-
ted wave "eld is essentially linear. These results are for an incident wave system in which all
components are in phase at x"0. Clearly, the relative phasing of the various wave
components may have a signi"cant in#uence on the numerical results.
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Table 1 presents the amplitudes of the "rst-order, second-order and total free-surface
elevations at the upwave and downwave edges of the cylinder (i.e., the wave run-up
components) for the same data used to generate Figures 7 and 8. It can be seen that
the maxima of the "rst- and second-order run-up do not occur simultaneously; conse-
quently the maximum total run-up is less than the sum of the "rst- and second-order
components.

Figures 9 and 10 present similar data to Figures 7 and 8, respectively, but for the case
k
1
h"1)5, k

2
h"3)5. The conclusions regarding the earlier case are also true here, i.e., the

structure presents an e!ective "lter to the transmission of the second-order wave "eld.
Table 2 presents the amplitudes of the "rst-order, second-order and total wave run-up

components at the upwave and downwave edges of the cylinder for the same data used to
Figure 9. Second-order (a) sum-frequency and (b) di!erence-frequency surface elevation components at time
t"0 for k

1
h"1)5, k

2
h"3)5, b/h"1, and d/h"0)2. Notation: ***, (u

1
$u

1
) components; } )} )}, (u

2
$u

2
)

components; } } } } } } } }, (u
1
$u

2
) components; ***, (u

2
$u

1
) components.



Figure 10. First-order, second-order and total surface elevation components at time t"0 for k
1
h"1)5,

k
2
h"3)5, b/h"1, H

1
/h"H

2
/h"0)1, and d/h"0)2: } } } , "rst-order components; *** , second-order

components; ***, total ("rst-plus second-order).

TABLE 1

Amplitudes of "rst-order, second-order and total surface elevations at upwave and
downwave edges of cylinder for k

1
h"1, k

2
h"4, b/h"1, H

1
/h"H

2
/h"0)1, and

d/h"0)2

Upwave (x"!b) Downwave (x"b)

First-order surface elevation 1)925 0)310
Second-order surface elevation 0)515 0)049
Total surface elevation 2)307 0)324
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TABLE 2

Amplitudes of "rst-order, second-order and total surface elevations at upwave and
downwave edges of cylinder for k

1
h"1)5, k

2
h"3)5, b/h"1, H

1
/h"H

2
/h"0)1, and

d/h"0)2

Upwave (x"!b) Downwave (x"b)

First-order surface elevation 1)970 0)225
Second-order surface elevation 0)424 0)049
Total surface elevation 2)283 0)236

396 W. LI AND A. N. WILLIAMS
generate Figures 9 and 10. Again, it can be seen that "rst- and second-order run-up
components are not in phase and the upwave values are signi"cantly larger than the
downwave ones.

4. CONCLUSIONS

A complete second-order solution has been presented for the di!raction of bichromatic
Stokes waves by a semi-immersed rectangular cylinder. Analytical expressions have been
developed for the #uid velocity potentials at both "rst- and second-order in the three #uid
domains; upwave, downwave, and beneath the structure. Numerical results have been
presented for the sum- and di!erence-frequency hydrodynamic loads, and the free-surface
elevations upwave and downwave of the structure. For the range of wave amplitudes and
frequencies considered herein it is found that although the second-order hydrodynamic
loads on the structure may be signi"cant, the transmitted wave "eld is essentially linear.

ACKNOWLEDGEMENT

This work was supported in part by the Texas Advanced Technology Program (Project
No. 003652-856). This support is gratefully acknowledged.

REFERENCES

ISAACSON, M. & CHEUNG, K. F. 1990 Time domain solution for second-order wave di!raction. ASCE
Journal of=aterway, Port, Coastal and Ocean Division 116, 191}210)

ISAACSON, M. & CHEUNG, K. F. 1991 Second-order wave di!raction around two-dimensional bodies
by time domain method. Applied Ocean Research 13, 175}186.

ISAACSON, M. & NG, J. Y. T. 1993 Time domain second-order wave radiation in two dimensions.
Journal of Ship Research 37, 25}33.

LIGHTHILL, M. J. 1979 Waves and hydrodynamic loading. Proceedings Behavior of O+shore Structures
(BOSS), London, U.K., pp. 1}40.

MIAO, G. P. & LIU, Y. Z. 1986 A theoretical study of the second-order wave forces for two-
dimensional bodies. Proceedings of the 5th International O+shore Mechanics and Arctic Engineer-
ing Conference, Tokyo, Japan, pp. 330}336.

MOLIN, B. 1979 Second-order di!raction loads on three-dimensional bodies. Applied Ocean Research
1, 197}202.

NEWMAN, J. N. 1990 Second-harmonic wave di!raction at large depths. Journal of Fluid Mechanics
213, 59}70.

SARPKAYA, T. & ISAACSON, M. 1981 Mechanics of=ave Forces on O+shore Structures. New York: Van
Nostrand Reinhold.

SULISZ, W. 1993 Di!raction of second-order surface waves by semi-submerged horizontal rectangular
cylinder. ASCE Journal of=aterway, Port, Coastal and Ocean Division 119, 160}171.



DIFFRACTION OF SECOND-ORDER BICHROMATIC WAVES 397
SULISZ, W. & JOHANSSON, M. 1992 Second-order wave loading on a horizontal rectangular cylinder
of substantial draught. Applied Ocean Research 14, 333}340.

VADA, T. 1987 A numerical solution of the second-order wave di!raction problem for a submerged
cylinder of arbitrary shape. Journal of Fluid Mechanics 174, 23}37.

WU, G. X. 1991 On the second-order re#ection and transmission by a horizontal cylinder. Applied
Ocean Research 13, 58}62.

WU, G. X. 1993a Second-order wave radiation by a submerged horizontal circular cylinder. Applied
Ocean Research 15, 293}303,

WU, G. X. 1993b Hydrodynamic forces on a submerged circular cylinder undergoing large-amplitude
motion. Journal of Fluid Mechanics 254, 41}58.

WU, G. X. & EATOCK TAYLOR, R. 1990 The second-order di!raction force on a horizontal cylinder.
Applied Ocean Research 12, 106}111.


	1. INTRODUCTION
	2. THEORETICAL DEVELOPMENT
	Figure 1

	3. NUMERICAL RESULTS AND DISCUSSION
	TABLE 1
	TABLE 2
	Figure 2
	Figure 3
	Figure 4
	Figure 5  
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10

	4. CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

